
Java LibreOffice Programming. Chapter 18. Slide Shows Draft #2 (20th March 2017)

 1 © Andrew Davison 2017

Part 3: Draw & Impress Modules

Chapter 18. Slide Shows

This chapter focuses on ways to programmatically control

slide shows. If you're unfamiliar with what Impress offers

in this regard, then chapter 9 of the Impress user guide

gives a good overview.

Creating and controlling slide shows employs properties

in the Presentation service, and methods in the

XSlideShowController interface (see Figure 1).

Figure 1. The Slide Show Presentation Services.

Two elements of slide shows not shown in Figure 1 are slide transition effects (e.g.

have the next slide fade into view, replacing the current one), and shape animation

effects (e.g. have some text whoosh in from the bottom of the screen). These effects

are mostly controlled by setting properties – transition properties are in the

com.sun.star.presentation.DrawPage service, animations properties in

com.sun.star.presentation.Shape.

1. Starting a Slide Show

The BasicShow.java example shows how a program can start a slide show, and then

let the user progress through the presentation by clicking on a slide, pressing the space

bar, or using the arrow keys.

While the slide show is running, BasicShow.java suspends, but wakes up when the

user exits the show. This can occur when he presses the ESC key, or clicks on the

slide show's "click to exit" screen. BasicShow then closes the document and shuts

down Office.

The main() function:

Example folders: "Draw

Tests" and "Utils"

Topics: Starting a Slide

Show; Play and End a

Slide Show

Automatically; Play a

Slide Show Repeatedly;

Play a Custom Slide

Show

Java LibreOffice Programming. Chapter 18. Slide Shows Draft #2 (20th March 2017)

 2 © Andrew Davison 2017

// in BasicShow.java

public static void main(String args[])

{

 XComponentLoader loader = Lo.loadOffice();

 XComponent doc = Lo.openDoc(args[0], loader);

 if (doc == null) {

 System.out.println("Could not open "+ args[0]);

 Lo.closeOffice();

 return;

 }

 GUI.setVisible(doc, true);

 // slideshow start() crashes if the doc is not visible

 XPresentation2 show = Draw.getShow(doc);

 Props.showObjProps("Slide show", show);

 show.start();

 XSlideShowController sc = Draw.getShowController(show);

 Draw.waitEnded(sc); // BasicShow waits for the user

 // to finish the slide show

 Lo.closeDoc(doc);

 Lo.closeOffice();

} // end of main()

The document is opened in the normal way and a slide show object created by calling

Draw.getShow(), which is defined as:

// in the Draw class

public static XPresentation2 getShow(XComponent doc)

{

 XPresentationSupplier ps = Lo.qi(XPresentationSupplier.class, doc);

 return Lo.qi(XPresentation2.class, ps.getPresentation());

}

The call to Props.showObjProps() in main() prints the properties associated with the

slide show, most of which are defined in the Presentation service (see Figure 1):

Slide show Properties

 AllowAnimations == true

 CustomShow ==

 Display == 0

 FirstPage ==

 IsAlwaysOnTop == false

 IsAutomatic == false

 IsEndless == false

 IsFullScreen == true

 IsMouseVisible == false

 IsShowAll == true

 IsShowLogo == false

 IsTransitionOnClick == true

 Pause == 10

 StartWithNavigator == false

 UsePen == false

The default values for these properties are sufficient for most presentations.

Java LibreOffice Programming. Chapter 18. Slide Shows Draft #2 (20th March 2017)

 3 © Andrew Davison 2017

The slide show is started by calling XPresentation.show() and, although the call

returns immediately, it may be a few 100 milliseconds before the presentation appears

on screen. If you have more than one monitor, one of them will be allocated a

"Presenter Console" window.

This short period while the slide show initializes can cause a problem if the

XSlideShowController instance is requested too quickly – null will be returned if the

slide show hasn't finished being created. Draw.getShowController() handles this issue

by waiting:

// in the Draw class

public static XSlideShowController getShowController(

 XPresentation2 show)

// keep trying to get the slide show controller

{

 XSlideShowController sc = show.getController();

 // may return null if executed too quickly after start of show

 int numTries = 1;

 if ((sc == null) && (numTries < 4)) { // try 3 times

 Lo.delay(1000); // give the slide show time to start

 numTries++;

 sc = show.getController();

 }

 if (sc == null)

 System.out.println("Could not obtain slide show controller");

 return sc;

} // end of XSlideShowController getShowController()

getShowController() tries to obtain the controller three times before giving up and

returning null.

The XSlideShowController interface gives the programmer much greater control over

the slide show, including the ability to change the slide being displayed, and monitor

and control the slide show state. Two topics I won't cover here are how

XSlideShowController can assign listeners to the slide show (of type

XSlideShowListener), and how to utilize the XSlideShow interface.

Back in BasicShow.java, the main() function suspends by calling Draw.waitEnded();

the idea is that the program will sleep until the human presenter ends the slide show.

waitEnded() is implemented using XSlideShowController:

// in the Draw class

public static void waitEnded(XSlideShowController sc)

{

 while (sc.getCurrentSlideIndex() != -1) //presentation not ended

 Lo.delay(1000);

 System.out.println("End of presentation detected");

}

XSlideShowController.getCurrentSlideIndex() normally returns a slide index (i.e. 0 or

greater), but when the slide show has finished it returns -1. waitEnded() keeps polling

for this value, sleeping for a second between each test.

Java LibreOffice Programming. Chapter 18. Slide Shows Draft #2 (20th March 2017)

 4 © Andrew Davison 2017

2. Play and End a Slide Show Automatically

The AutoShow.java example removes the need for a presenter to click on a slide to

progress to the next one, and terminates the show itself after the last slide had been

displayed:

// in AutoShow.java

public static void main(String args[])

{

 XComponentLoader loader = Lo.loadOffice();

 XComponent doc = Lo.openDoc(args[0], loader);

 if (doc == null) {

 System.out.println("Could not open "+ args[0]);

 Lo.closeOffice();

 return;

 }

 GUI.setVisible(doc, true);

 // fast automatic change between all the slides

 XDrawPage[] slides = Draw.getSlidesArr(doc);

 for(XDrawPage slide : slides)

 Draw.setTransition(slide, FadeEffect.NONE, AnimationSpeed.FAST,

 Draw.AUTO_CHANGE, 1);

 XPresentation2 show = Draw.getShow(doc);

 show.start();

 XSlideShowController sc = Draw.getShowController(show);

 Draw.waitLast(sc, 3000); // terminate 3 seconds after the

 // last slide has been shown

 System.out.println("Ending the slide show");

 sc.deactivate();

 show.end();

 Lo.closeDoc(doc);

 Lo.closeOffice();

} // end of main()

Automatic Slide Transitioning

The automated transition between slides is configured by calling Draw.setTransition()

on every slide in the deck:

Draw.setTransition(slide, FadeEffect.NONE,

 AnimationSpeed.FAST,

 Draw.AUTO_CHANGE, 1);

setTransition() combines the setting of four slide properties: "Effect", "Speed",

"Change", and "Duration":

// in the Draw class

public static void setTransition(XDrawPage currSlide,

 FadeEffect fadeEffect, AnimationSpeed speed,

 int change, int duration)

{ try {

Java LibreOffice Programming. Chapter 18. Slide Shows Draft #2 (20th March 2017)

 5 © Andrew Davison 2017

 XPropertySet props = Lo.qi(XPropertySet.class, currSlide);

 props.setPropertyValue("Effect", fadeEffect);

 props.setPropertyValue("Speed", speed);

 props.setPropertyValue("Change", change);

 props.setPropertyValue("Duration", duration); // in seconds

 }

 catch (Exception e)

 { System.out.println("Could not set slide transition"); }

} // end of setTransition()

Slide transition properties (such as "Effect", "Speed", "Change", and "Duration") are

defined in the com.sun.star.presentation.DrawPage service. However, the possible

values for "Effect" are stored in an enumeration listed at the end of the

com.sun.star.presentation module (use lodoc presentation module, and scroll to

the bottom of the page); Figure 2 shows the enum.

Figure 2. The FadeEffect Enum.

If you click on a word in the enum, then the browser follows a link to more

information.

The "Speed" property is used to set the speed of a slide transition, and its values are

also stored in an enum in the com.sun.star.presentation package. There are three

possible settings: AnimationSpeed.SLOW, AnimationSpeed.MEDIUM, and

AnimationSpeed.FAST.

The "Change" property specifies how a transition is triggered. The property can take

one of three integer values, which aren't defined by an enum for some reason. Instead,

the programmer can use constants defined in my Draw class:

// in the Draw class

// slide show change constants

public static final int CLICK_ALL_CHANGE = 0;

public static final int AUTO_CHANGE = 1;

public static final int CLICK_PAGE_CHANGE = 2;

Java LibreOffice Programming. Chapter 18. Slide Shows Draft #2 (20th March 2017)

 6 © Andrew Davison 2017

The default behavior is represented by 0 (Draw.CLICK_ALL_CHANGE) which requires

the presenter to click on a slide to change it, and a click is also need to trigger any

shape animations on the page. A value of 2 (Draw.CLICK_PAGE_CHANGE) relieves the

presenter from clicking to trigger shape animations, but he still needs to activate a

slide transition manually. AutoShow.java passes Draw.AUTO_CHANGE to

Draw.setTransition() which causes all the animations and transitions to execute

automatically.

The "Duration" property is specified in seconds and refers to how long the current

slide stays on display before the transition effect begins. This is different from the

"Speed" property which refers to how quickly a transition is performed.

Finishing Automatically

The other aspect of this automated slide show is making it stop when the last slide has

been displayed. This is implemented by Draw.waitLast():

// in the Draw class

public static void waitLast(XSlideShowController sc, int delay)

{

 int numSlides = sc.getSlideCount();

 while (sc.getCurrentSlideIndex() < numSlides-1) {

 // has not yet reached the last slide

 Lo.delay(500);

 }

 Lo.delay(delay);

} // end of waitLast()

waitLast() keeps checking the current slide index and sleeps until the last slide in the

deck is reached. It then goes to sleep one last time, to give the final slide time to be

seen by the user.

3. Play a Slide Show Repeatedly

Another common kind of automated slide show is one that plays the show repeatedly,

only terminating when the presenter steps in and presses the ESC key. This only

requires four lines to be changed in AutoShow.java, shown in bold below:

// in AutoShow.java

 :

XPresentation2 show = Draw.getShow(doc);

Props.showObjProps("Slide show", show);

Props.setProperty(show, "IsEndless", true);

Props.setProperty(show, "Pause", 0);

 // no pause before repeating

show.start();

XSlideShowController sc = Draw.getShowController(show);

// Draw.waitLast(sc, 3000);

 // commented out; replaced by the next line

Draw.waitEnded(sc);

Java LibreOffice Programming. Chapter 18. Slide Shows Draft #2 (20th March 2017)

 7 © Andrew Davison 2017

System.out.println("Ending the slide show");

sc.deactivate();

show.end();

 :

The "IsEndless" property turns on slide show cycling, and "Pause" indicates how long

the black "Click to exit" screen is displayed before the show restarts.

Draw.waitEnded() is the same as before – it makes AutoShow.java suspend until the

user clicks on the exit screen or presses the ESC key.

4. Play a Custom Slide Show

A custom slide show is a display sequence other than the usual one that starts with the

first slide and moves linearly through to the last. A named 'play list' of pages must be

created, consisting of references to slides in the deck. The list can point to the slides in

any order, and may reference a slide more than once.

Draw.buildPlayList() creates the named play list using three arguments: the slide

document, an array of slide indices which represents the intended playing sequence,

and a name for the list. For example:

int[] slideIdxs = new int[] {5, 6, 7, 8};

XNameContainer playList =

 Draw.buildPlayList(doc, slideIdxs, "ShortPlay");

This creates a play list called "ShortPlay" which will show the slides with indices 5, 6,

7, and 8 (note: the first slide has index 0). Draw.buildPlayList is used in the

CustomShow.java example:

// in CustomShow.java

public static void main(String args[])

{

 XComponentLoader loader = Lo.loadOffice();

 XComponent doc = Lo.openDoc("algs.odp", loader);

 if (doc == null) {

 System.out.println("Could not open algs.odp");

 Lo.closeOffice();

 return;

 }

 GUI.setVisible(doc, true);

 int[] slideIdxs = new int[] {5, 6, 7, 8};

 XNameContainer playList =

 Draw.buildPlayList(doc, slideIdxs, "ShortPlay");

 XPresentation2 show = Draw.getShow(doc);

 Props.setProperty(show, "CustomShow", "ShortPlay");

 show.start();

 XSlideShowController sc = Draw.getShowController(show);

 Draw.waitEnded(sc);

Java LibreOffice Programming. Chapter 18. Slide Shows Draft #2 (20th March 2017)

 8 © Andrew Davison 2017

 Lo.closeDoc(doc);

 Lo.closeOffice();

} // end of main()

The play list is installed by setting the "CustomShow" property in the slide show. The

rest of the code in CustomShow.java is similar to the BasicShow.java example.

Creating a Play List Using Containers

The most confusing part of Draw.buildPlayList() is its use of two containers to hold

the play list:

// part of buildPlayList() in the Draw class

 :

// get name container for the slide show

XNameContainer playList = Draw.getPlayList(doc);

// get factory from the container

XSingleServiceFactory xFactory =

 Lo.qi(XSingleServiceFactory.class, playList);

// use factory to make an index container

XIndexContainer slidesCon = Lo.qi(XIndexContainer.class,

 xFactory.createInstance());

 :

An index container is created by XSingleServiceFactory.createInstance(), which

requires a factory instance. This factory is most conveniently obtained from an

existing container, namely the one for the slide show. That's obtained by

Draw.getPlayList():

// in the Draw class

public static XNameContainer getPlayList(XComponent doc)

// get a name container for the play list

{

 XCustomPresentationSupplier cpSupp =

 Lo.qi(XCustomPresentationSupplier.class, doc);

 return cpSupp.getCustomPresentations();

}

Draw.buildPlayList() fills the index container with references to the slides, and then

places it inside the name container:

/* store the index container under the play list name

 in the name container */

playList.insertByName(customName, slidesCon);

In other words, the play list is a name container holding a named index container.

The rest of buildPlayList() is straightforward:

// in the Draw class

Java LibreOffice Programming. Chapter 18. Slide Shows Draft #2 (20th March 2017)

 9 © Andrew Davison 2017

public static XNameContainer buildPlayList(XComponent doc,

 int[] slideIdxs, String customName)

{

 // get a name container for the play list

 XNameContainer playList = Draw.getPlayList(doc);

 try {

 // create an index container for the play list

 XSingleServiceFactory xFactory =

 Lo.qi(XSingleServiceFactory.class, playList);

 XIndexContainer slidesCon = Lo.qi(XIndexContainer.class,

 xFactory.createInstance());

 /* index container is assigned slide references

 whose indices come from slideIdxs

 */

 System.out.println("Building play list using: ");

 for(int j=0; j < slideIdxs.length; j++) {

 XDrawPage slide = Draw.getSlide(doc, slideIdxs[j]);

 if (slide != null) {

 slidesCon.insertByIndex(j, slide);

 System.out.println(" Slide " + slideIdxs[j]);

 }

 }

 /* store the index container under the play list name

 in the name container */

 playList.insertByName(customName, slidesCon);

 System.out.println("Playlist has name: " + customName + "\n");

 return playList;

 }

 catch (com.sun.star.uno.Exception e)

 { System.out.println("Unable to build play list: " + e);

 return null;

 }

} // end of buildPlayList()

The for-loop employs the array of indices to get references to the slides via

Draw.getSlide(). Each reference is added to the index container.

